Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Sex Differ ; 14(1): 63, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770988

RESUMO

BACKGROUND: Sex differences have been observed in the development of obesity-related complications in patients, as well as in animal models. Accumulating evidence suggests that sex-dependent regulation of lipid metabolism contributes to sex-specific physiopathology. Lipid accumulation in the renal tissue has been shown to play a major role in the pathogenesis of obesity-induced kidney injury. Unlike in males, the physiopathology of the disease has been poorly described in females, particularly regarding the lipid metabolism adaptation. METHODS: Here, we compared the lipid profile changes in the kidneys of female and male mice fed a high-fat diet (HFD) or low-fat diet (LFD) by lipidomics and correlated them with pathophysiological changes. RESULTS: We showed that HFD-fed female mice were protected from insulin resistance and hepatic steatosis compared to males, despite similar body weight gains. Females were particularly protected from renal dysfunction, oxidative stress, and tubular lipid accumulation. Both HFD-fed male and female mice presented dyslipidemia, but lipidomic analysis highlighted differential renal lipid profiles. While both sexes presented similar neutral lipid accumulation with obesity, only males showed increased levels of ceramides and phospholipids. Remarkably, protection against renal lipotoxicity in females was associated with enhanced renal adiponectin and AMP-activated protein kinase (AMPK) signaling. Circulating adiponectin and its renal receptor levels were significantly lower in obese males, but were maintained in females. This observation correlated with the maintained basal AMPK activity in obese female mice compared to males. CONCLUSIONS: Collectively, our findings suggest that female mice are protected from obesity-induced renal dysfunction and lipotoxicity associated with enhanced adiponectin and AMPK signaling compared to males.


Obesity-related complications can differ between men and women due to sex-specific differences in how fats are handled. Here, we studied the effects of high-fat diet on the kidneys of male and female mice. We found that despite gaining similar weight, obese female mice were better protected against insulin resistance, liver fat accumulation, and kidney damage caused by obesity than males. In particular, female mice were protected against lipid accumulation in the kidneys. We further analyzed the lipid profile in the kidneys of both male and female mice and observed differences in the amount and nature of the accumulated lipids. Male mice had increased levels of specific lipids, which may contribute to their higher risk of kidney damage. In contrast, female mice showed better lipid metabolism adaptation, which helped to protect their kidneys. This study also revealed an association between higher levels of the protein hormone adiponectin and higher activity of the cellular energy master regulator protein AMPK in obese females. These proteins may help prevent obesity-induced kidney damage. In obese males, these protective proteins are reduced and are associated with kidney damage. In conclusion, this study suggests that female mice are naturally shielded from obesity-induced kidney damage and lipid accumulation in the kidneys. Obesity in males is associated with the presence of potentially toxic lipids and dysregulated renal metabolism. Understanding these sex-related differences in obesity-related complications could lead to better management and treatment of kidney problems in both men and women.


Assuntos
Adiponectina , Nefropatias , Animais , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Nefropatias/etiologia , Lipidômica , Lipídeos , Obesidade/metabolismo , Caracteres Sexuais
2.
Front Med (Lausanne) ; 9: 822870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602498

RESUMO

Aristolochic acid nephropathy (AAN) is a progressive tubulointerstitial nephritis caused by the intake of aristolochic acids (AA) contained in Chinese herbal remedies or contaminated food. AAN is characterized by tubular atrophy and interstitial fibrosis, characterizing advanced kidney disease. It is established that sustained or recurrent acute kidney injury (AKI) episodes contribute to the progression of CKD. Therefore, the study of underlying mechanisms of AA-induced nephrotoxicity could be useful in understanding the complex AKI-to-CKD transition. We developed a translational approach of AKI-to-CKD transition by reproducing human AAN in rodent models. Indeed, in such models, an early phase of acute tubular necrosis was rapidly followed by a massive interstitial recruitment of activated monocytes/macrophages followed by cytotoxic T lymphocytes, resulting in a transient AKI episode. A later chronic phase was then observed with progressive tubular atrophy related to dedifferentiation and necrosis of tubular epithelial cells. The accumulation of vimentin and αSMA-positive cells expressing TGFß in interstitial areas suggested an increase in resident fibroblasts and their activation into myofibroblasts resulting in collagen deposition and CKD. In addition, we identified 4 major actors in the AKI-to-CKD transition: (1) the tubular epithelial cells, (2) the endothelial cells of the interstitial capillary network, (3) the inflammatory infiltrate, and (4) the myofibroblasts. This review provides the most comprehensive and informative data we were able to collect and examines the pending questions.

3.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396267

RESUMO

Exercise training is now recognized as an interesting therapeutic strategy in managing obesity and its related disorders. However, there is still a lack of knowledge about its impact on obesity-induced chronic kidney disease (CKD). Here, we investigated the effects of a delayed protocol of endurance exercise training (EET) as well as the underlying mechanism in obese mice presenting CKD. Mice fed a high-fat diet (HFD) or a low-fat diet (LFD) for 12 weeks were subsequently submitted to an 8-weeks EET protocol. Delayed treatment with EET in obese mice prevented body weight gain associated with a reduced calorie intake. EET intervention counteracted obesity-related disorders including glucose intolerance, insulin resistance, dyslipidaemia and hepatic steatosis. Moreover, our data demonstrated for the first time the beneficial effects of EET on obesity-induced CKD as evidenced by an improvement of obesity-related glomerulopathy, tubulo-interstitial fibrosis, inflammation and oxidative stress. EET also prevented renal lipid depositions in the proximal tubule. These results were associated with an improvement of the AMPK pathway by EET in renal tissue. AMPK-mediated phosphorylation of ACC and ULK-1 were particularly enhanced leading to increased fatty acid oxidation and autophagy improvement with EET in obese mice.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Dieta Hiperlipídica/efeitos adversos , Obesidade/complicações , Condicionamento Físico Animal , Insuficiência Renal Crônica/prevenção & controle , Proteínas Quinases Ativadas por AMP/genética , Animais , Intolerância à Glucose , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fosforilação , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
4.
PLoS One ; 12(8): e0183604, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832640

RESUMO

Aristolochic Acid (AA) nephropathy (AAN) is a progressive tubulointerstitial nephritis characterized by an early phase of acute kidney injury (AKI) leading to chronic kidney disease (CKD). The reduced nitric oxide (NO) bioavailability reported in AAN might contribute to renal function impairment and progression of the disease. We previously demonstrated that L-arginine (L-Arg) supplementation is protective in AA-induced AKI. Since the severity of AKI may be considered a strong predictor of progression to CKD, the present study aims to assess the potential benefit of L-Arg supplementation during the transition from the acute phase to the chronic phase of AAN. C57BL/6J male mice were randomly subjected to daily i.p. injections of vehicle or AA for 4 days. To determine whether renal AA-induced injuries were linked to reduced NO production, L-Arg was added to drinking water from 7 days before starting i.p. injections, until the end of the protocol. Mice were euthanized 5, 10 and 20 days after vehicle or AA administration. AA-treated mice displayed marked renal injury and reduced NO bioavailability, while histopathological features of AAN were reproduced, including interstitial cell infiltration and tubulointerstitial fibrosis. L-Arg treatment restored renal NO bioavailability and reduced the severity of AA-induced injury, inflammation and fibrosis. We concluded that reduced renal NO bioavailability contributes to the processes underlying AAN. Furthermore, L-Arg shows nephroprotective effects by decreasing the severity of acute-to-chronic transition in experimental AAN and might represent a potential therapeutic tool in the future.


Assuntos
Ácidos Aristolóquicos/toxicidade , Nefropatias/metabolismo , Óxido Nítrico/metabolismo , Animais , Arginina/administração & dosagem , Disponibilidade Biológica , Inflamação/prevenção & controle , Nefropatias/induzido quimicamente , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...